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Abstract. Entry of a shock wave into a microchannel and its propagation in the channel are studied numerically by the 
continuum and kinetic approaches. It is shown that the shock wave is amplified immediately after it enters the 
microchannel. After that, the shock wave in an inviscid computation propagates over the microchannel with a constant 
velocity. In a viscous computation, the shock wave velocity decreases and the wave attenuates. Qualitative agreement 
between experimental data and viscous computations is demonstrated.  
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INTRODUCTION 

The interest in the microscale flow behavior has increased during the last two decades owing to rapid progress in 
micromachining techniques. The effects of viscosity and heat conduction, heat losses due to the wall heat transfer, as 
well as nonequilibrium phenomena can play an important role in microflows. Recent numerical investigations of 
shock wave propagation in a microchannel with allowance for viscosity and rarefaction effects [1] revealed 
significant differences from the inviscid theory, which ensures a correct description of the majority of specific 
features of macroflows. In that work, the shock wave was generated by breakdown of a membrane separating high-
pressure and low-pressure domains. At the moment, however, such an experiment is not feasible, as was noted in 
[2]. Nevertheless, an alternative variant of shock wave generation in a microchannel was proposed in [3]. The idea 
was to generate the shock wave in a conventional shock tube and then make it move from the low-pressure chamber 
to the microchannel. The numerical studies [3] based on Navier-Stokes computations demonstrated the attenuation 
of the shock wave in the microchannel. The necessity of further research with due allowance for rarefaction effects 
was noted in that paper.  

A recent experimental study of the shock wave entry and propagation in a contracting channel [4] showed 
attenuation of the shock inside the microchannel. As was noted in that paper, one possible theoretical explanation of 
this result can be found in terms of transport losses at the channel entrance and inside it. Nevertheless, full 
understanding of this process is still unavailable. There may be several reasons responsible for the shock wave 
attenuation in the microchannel: roughness of the walls, effects of viscosity and heat exchange with the walls, etc.  

The basic goal of our research is numerical simulations of the shock wave entry and propagation in a 
microchannel with due allowance for viscosity and rarefaction effects. In this paper, we use two different simulation 
approaches: the kinetic approach based on the Boltzmann equation and the continuum approach based on Euler and 
Navier–Stokes (NS) equations. Euler computations are also necessary for comparisons with viscous simulations to 
reveal effects of viscosity. In NS computations, the rarefaction effects are taken into account by imposing the 
velocity slip and temperature jump boundary conditions on solid walls. As the Knudsen number in this research is 
approximately 8.2×10-3 and also due to gas nonequilibrium inside the shock waves, the applicability of NS equations 
cannot be taken for granted; therefore, Direct Simulation Monte Carlo (DSMC) [5] computations are additionally 



performed for verification of numerical data. The DSMC method can be considered as a numerical tool for solving 
the kinetic Boltzmann equation, which offers an exact description of the internal structure of the shock waves.  

NUMERICAL TECHNIQUES AND BOUNDARY CONDITIONS 

The computations are conducted with the full two-dimensional Euler, Navier–Stokes (NS) equations and the 
Direct Simulation Monte Carlo (DSMC) method [5]. The Navier–Stokes code [6] is a time-explicit shock-capturing 
code based on 5th order WENO reconstruction [7] of convective fluxes and central 4th order approximation of 
dissipation terms. A structured rectangular grid with refinement in Y-direction inside microchannel and uniform grid 
in X-direction is used. To model shock wave propagation in Euler and NS computations, conditions corresponding 
to the Rankine-Hugoniot conditions behind the normal shock wave with the corresponding shock wave Mach 
number Mis are imposed on the left boundary of the computational domain. As the main task of the present work was 
modeling the shock wave entry and propagation in a microchannel, the inviscid wall conditions (denoted by E in fig. 
1) are imposed on the upper boundary of the ordinary channel and on the right boundary of the microchannel. 

 
FIGURE 1. Boundary conditions. E - inviscid wall in Euler and NS computations (specular reflection in DSMC computation), 

W – isothermal wall with no-slip in NS computation (diffuse reflection in DSMC computation), 
S – isothermal wall with slip in NS computation. 

Specific features associated with the boundary layer on the upper wall of the ordinary channel and reflection of the 
shock wave that entered the microchannel from the right wall are not considered in this study. As shock wave 
propagation is considered in the present work at small times (~ 3 µs), the isothermal wall conditions are set on the 
right boundary of the ordinary channel and on the upper boundary of the microchannel. The right boundary of the 
ordinary channel is subjected to the isothermal no-slip boundary condition (denoted by w in fig. 1). The present 
study includes two series of computations with different boundary conditions on the upper wall of the microchannel: 
isothermal no-slip and isothermal slip boundary conditions (denoted by w/s in fig. 1). In Euler computations inviscid 
walls were used for all boundaries of channels. The computations are started with a uniform flow field 
corresponding to quiescent gas. The numerical solution is then advanced in time with the third-order Runge–Kutta 
scheme until the shock wave that entered the microchannel reaches the right wall and reflects from it. 

 
FIGURE 2. Microchannel geometry. The 5 microchannel pressure transducers are denoted as S1 to S5. 

The DSMC computations are performed by the statistical modeling in low-density environment (SMILE) 
software system [8] which uses the majorant frequency method for computing collision integrals. The computational 
domain is similar to the domain used in the NS computations (see fig. 1). The specular reflection conditions 
(denoted by E in fig. 1) are imposed on the upper boundary of the ordinary channel and on the right boundary of the 
microchannel. The diffuse reflection model with complete accommodation is applied on the upper wall of the 
microchannel. Conditions corresponding to the Rankine-Hugoniot conditions behind the normal shock wave with 
the corresponding shock wave Mach number are imposed on the left boundary of the computational domain. At the 
initial moment, the domain is populated by the model particles according to the Maxwell distribution function 
corresponding to the quiescent gas parameters. A uniform rectangular grid is used for modeling molecular collisions 
and sampling the gas dynamic parameters. Note that a typical computation takes more than 24 hours of computer 
time with 100 processors.  



 The power-law dependence of the dynamic viscosity coefficient µ on the temperature T with the exponent 
ω=0.74 is used in the NS computations. The variable hard-sphere model [5] (VHS) is used in the DSMC 
computations with the VHS parameter chosen to provide the same dependence of viscosity on temperature. In the 
DSMC computations flow of the diatomic gas (N2) with a ratio of specific heats γ=1.4 was used. 

The initial data were chosen to be the initial parameters corresponding to the case considered in [4]: Mis=2.03, 
γ=1.4, P0=1 atm, T0=293° K, L=8.5 µm, wc=2 mm, where Mis is the Mach number of the incident shock wave 
(hereinafter, the incident shock wave is understood as the shock wave propagating in the ordinary channel), γ is the 
ratio of specific heats, P0 and T0 are the pressure and temperature of the quiescent gas at the initial time, L is the 
microchannel half-height, and wc is the microchannel length. An experiment with the above-mentioned parameters 
was performed in [4] and provided pressure histories from transducers mounted on the microchannel wall (see 
fig. 2). In this study the results of Euler and NS computations are compared with the measurements: the pressure 
values on the wall at points corresponding to each transducer location were calculated at different times. 

RESULTS AND DISCUSSION 

Figure 3 shows the Mach number fields at different times. The incident shock wave propagating over the 
ordinary channel ahead of the microchannel entrance is shown in fig. 3а. After the incident wave enters the 
microchannel, an expansion fan is formed on the microchannel corner (see fig. 3b), in which the gas velocity 
increases and the flow becomes supersonic.  

 
FIGURE 3. Mach number at different time instants. Mis=2.03, γ=1.4, P0=1 atm, T0=293° K, L=8.5 µm, wc=2 mm. t=0 

corresponds to the instant when the incident shock wave enters the microchannel. 
After that (see fig. 3b, 3c), the wave reflected from the corner of the microchannel propagates toward the plane of 
symmetry. The boundary layer formed on the upper wall of the microchannel is clearly visible beginning from fig. 
3с. At the next instant (see fig. 3d), wave reflection occurs on the plane of symmetry, and a configuration similar to 
a regular configuration of shock waves is formed. It is also well seen in fig. 3d that the shock wave that passed 
inside the microchannel starts to curve because of its interaction with the upper wall of the microchannel. At the next 
time instant, the Mach reflection of shock waves is formed in the ordinary channel (fig. 3e), whereas one more wave 
reflected from the upper wall is seen in the microchannel. In what follows (fig. 3f), the Mach configuration of shock 
waves persists in the ordinary channel, and the wave reflected at the previous time instant from the upper wall of the 



microchannel is now reflected from the axis of symmetry. Thus, the flow behind the shock wave that entered the 
microchannel is far from being uniform, which may lead to shock wave amplification. 

  
  a) Density contours    b) Density profiles near the top wall of the microchannel 

FIGURE 4. Comparison of DSMC and NS with slip computations. Mis=2.03, γ=1.4, P0=1 atm, T0=293° K, L=8.5 µm, wc=2 mm. 
t=0 corresponds to the instant when the incident shock wave enters the microchannel. 

 
FIGURE 5. Shock wave propagation diagram inside the microchannel. a) (xs,t) diagram b) zoom for (xs,t) diagram c) zoom for 

(xs,t) diagram d) (Ms,t) diagram 
The NS computation with the slip condition and the DSMC computation are compared in fig. 4. Figure 4а shows 

the density fields, which are in good agreement. Note that the figure shows isolines corresponding to the values of 
density normalized to the quiescent gas density. A large difference is observed for the thickness of the shock wave 
that passed inside the microchannel, but the thicknesses of the other shock waves are commensurable. Figure 4b 
shows the density profiles at constant values of the Y coordinate (Y=L, where L is the microchannel half-height and 
Y=0 corresponds to the plane of symmetry). The value corresponding to the density behind the incident shock wave 
is shown by the dotted curve. The segment AB in fig. 4b corresponds to the shock wave that passed inside the 
microchannel; the segment CD is the expansion fan formed on the corner. The segment FE refers to the shock wave 
reflected from the right wall of the ordinary channel. It is seen that the density in the microchannel differs 
substantially from the values corresponding to the Rankine-Hugoniot conditions. 



 
    a)      b) 

 
    c)      d) 
FIGURE 6. Pressure histories in the microchannel. a) Experiment, b) NS computations with no-slip boundary conditions,  

c) NS computations with slip boundary conditions, d) Euler computation. 
The results (see fig. 5) of numerical simulations of shock wave propagation in the microchannel are presented in 

the form (Ms,t) and (xs,t), where Ms and xs are the Mach number and the coordinate of the shock wave propagating 
in the microchannel, and t is the time. The coordinate system is chosen so that the point (0,0) in the plane (xs,t) 
corresponds to the time instant when the incident shock wave reaches the microchannel. It is seen from fig. 5d that 
the shock wave Mach number increases after the wave enters the microchannel and reaches a maximum value at the 
point t~0.2 µs. After that, the shock wave starts to attenuate in the viscous computation owing to its interaction with 
the wall of the microchannel, whereas the shock wave in the inviscid case propagates with a constant velocity. As is 
seen from the figures, the numerical solutions of the Navier-Stokes equations with different boundary conditions 
(isothermal no-slip and isothermal slip boundary condition) on the upper wall of the microchannel are practically 
indistinguishable. The numerical results of the viscous computation on the (xs,t) diagram practically do not differ 
from a straight line (dotted curve in fig. 5a, 5b, 5c) corresponding to shock wave propagation with a constant 
velocity equal to the incident wave velocity. It is worth to note that in viscous case it looks like the effects of 
viscosity and heat conduction compensate shock wave amplification after entry inside a microchannel and average 
shock velocity is close to velocity of incident shock. Figure 5d also shows the experimental data [4] for the mean 
velocity of the shock wave in the microchannel between the pressure transducers. These results allow us to conclude 
that numerical simulations with allowance for viscosity effects qualitatively agree with the experimental data: the 
shock wave is amplified immediately behind the microchannel entrance and then decays. It is clearly seen that the 
experimental data coincide with the viscous computation on the segment t=0.63-1.7 µs. On the segment t=1.7-
2.94 µs, however, the experimental data display more intense attenuation of the transmitted shock wave. A possible 
reason for this discrepancy is three-dimensional effects, which were ignored in numerical simulations.  

The pressure histories obtained in numerical simulations and experiments [4] are compared in fig. 6. The zero 
point on the time axis in these graphs is the time when the shock wave entering the microchannel reaches the left 
boundary of the first (S1) transducer (see fig. 2). The zero value on the pressure axis corresponds to the quiescent 



gas pressure. Figures 6b and 6c show the pressure histories obtained by the numerical solution of Euler and NS 
equations with no-slip and slip boundary conditions on the top wall of the microchannel. It is seen that there is 
practically no difference between results of NS computations. The difference (~60 kPa) between the experimental 
and numerical data in those areas where the shock wave has already passed over the pressure transducers is clearly 
visible. A possible reason for this difference is three-dimensional effects, which were mentioned above. For the 
pressure transducer S1, the difference is both qualitative and quantitative. The pressure on the transducer surface 
permanently increases in the experiment, while numerical simulations predict a small segment (~0.5 µs) with an 
almost constant pressure. There are also significant differences for the pressure transducer S5: before the shock wave 
reflection from the right wall of the microchannel, computations give a small segment (~0.1 µs) with an almost 
constant pressure, whereas the experimental curve has practically no such a segment. It is also clearly seen that 
inviscid numerical simulation differs substantially from the viscous simulations and experiment – pressure on each 
transducer is constant and greater than in NS computations and experiment. The shock wave is reflected from the 
right wall of the microchannel at the point t~2.3 µs. The jump in pressure at this point on the pressure transducer S5 
corresponds to the increase in pressure behind the reflected shock wave. The subsequent behavior of the flow in the 
microchannel was not modeled, because the main goal of this study was to simulate the shock wave entry and its 
propagation in the microchannel. As a whole, we can state that reasonable agreement for a first simulation was 
obtained, considering that the actual geometry is more complicated that what is simulated. The microchannel is 
within a chip that is about 1 mm thick, so there is a flow around the chip and not a reflected shock like at the right 
boundary of the ordinary channel. At the moment, however, we cannot definitely say whether the flow around the 
microchannel exerts a strong effect on the flow inside the microchannel and whether this factor leads to a decrease in 
pressure.  

CONCLUSION 

The shock wave entry into a microchannel and its propagation in the microchannel at Mis=2.03 is studied 
numerically with the use of the continuum and kinetic approaches. A significant difference between the inviscid and 
viscous numerical computations is demonstrated. The numerical data obtained show that the shock wave is 
substantially amplified after it enters the microchannel. After that, the inviscid computation predicts shock wave 
propagation with a constant velocity, whereas the shock wave in the viscous case starts to attenuate. The results of 
viscous computations are in qualitative agreement with the experimental data [4], which show shock amplification 
after it enters the microchannel and its further attenuation.  
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